Total Synthesis of (+)-Decursivine

Sun, D.; Zhao, Q.; Li, C. Org. Lett. **2011**, ASAP. DOI: 10.1021/ol2021669

(+)-decursivine

Kara George Rosenker Wipf Group Current Literature 8 October 2011

(+)-Decursivine: Isolation and Biological Activity

- (+)-Decursivine was isolated in 2002 from the leaves and stems of *Rhaphidophora* decursiva, a perenial, evergreen vine found in the Cuc Phuong National Park in Vietnam
- (+)-Decursivine exhibits moderate antimalarial activity against the chloroquinineresistant *Plasmodium falciparum* ($IC_{50} = 4.4 \mu g/mL$)
- Structurally similar (±)-serotobenine was also isolated from the leaf extract; however, it showed no activity against *Plasmodium falciparum*
- Synthetic challenges include the sensitivity of the electron-rich indole to oxidation, the construction of the stereogenic centers on the dihydrobenzofuran, and the formation of the eight-membered lactam

Zhang, H.; Qiu, S.; Tamez, P.; Tan, G. T.; Aydogmus, Z.; Hung, N. V.; Cuong, N. M.; Angerhofer, C.; Soejarto, D. D.; Pezzuto, J. M.; Fong, H. H. S. *Pharm. Biol.* **2002**, *40*, 221-224. Leduc, A. B.; Kerr, M. A. *Eur. J. Org. Chem.* **2007**, 237-240. Mascal, M.; Modes, K. V.; Durmus, A. *Angew. Chem. Int. Ed.* **2011**, *50*, 4445-4446. Qin, H.; Xu, Z.; Cui, Y.; Jia, Y. *Angew. Chem. Int. Ed.* **2011**, *50*, 4447-4449.

Biosynthesis of (±)-Serotobenine & (+)-Decursivine

- The biosynthesis of both (+)-decursivine and (±)-serotobenine likely involves the cyclization of a cinnamide composed of serotonin and an appropriately substituted cinnamic acid
- This is supported by the co-isolation of moschamine, moschaminindolol, and serotobenine

Sato, H.; Kawagishi, H; Nishimura, T.; Yoneyama, S.; Yoshimoto, Y.; Sakamura, S.; Furusaki, A.; Katsuragi, S.; Matsumoto, T. Agric. Biol. Chem. **1985**, 49, 2969-2974. Sakamura, S.; Terayama, Y.; Kawakatsu, S.; Ichihara, A.; Saito, H. Agric. Biol. Chem. **1978**, 42, 1805-1806. Sakamura, S.; Terayama, Y.; Kawakatsu, S.; Ichihara, A.; Saito, H. Agric. Biol. Chem. **1980**, 44, 2951-2954.

First Total Synthesis of (±)-Decursivine

Leduc, A. B.; Kerr, M. A. Eur. J. Org. Chem. 2007, 237-240.

First Total Synthesis of (±)-Decursivine

Leduc, A. B.; Kerr, M. A. Eur. J. Org. Chem. 2007, 237-240.

Expedient Syntheses of (±)-Decursivine

Jia and co-workers: 4 steps, 20% overall yield

Mascal, M.; Modes, K. V.; Durmus, A. Angew. Chem. Int. Ed. **2011**, 50, 4445-4446. Qin, H.; Xu, Z.; Cui, Y.; Jia, Y. Angew. Chem. Int. Ed. **2011**, 50, 4447-4449.

Title Paper: Synthetic Design of (+)-Decursivine

Strategy includes:

- Biomimetic stereoselective oxidative intramolecular [3+2] cycloaddition
- Chirality transfer from the tryptophan to the two newly formed chiral centers

Sun, D.; Zhao, Q.; Li, C. Org. Lett. 2011, ASAP. DOI: 10.1021/ol2021669

Oxidative Dimerization of Substituted P-Hydroxystyrenes

schizotenuins 1-3

Juhász, L.; Kürti, L.; Antus, S. J. Nat. Prod. **2000**, 63, 866-870. Maeda, S.; Masuda, H.; Tokoroyama, T. Chem. Pharm. Bull. **1994**, 42, 2500-2505. Wasserman, H. H.; Brunner, R. K.; Buynak, J. D.; Carter, C. G.; Oku, T.; Robinson, R. P. J. Am. Chem. Soc. **1985**, 107, 519-521. Oxidative [3+2] Cycloaddition: Phenols and Electron-Rich Alkenes

Nicolaou, K. C.; Majumder, U.; Roche, S. P.; Chen, D. Y.-K. Angew. Chem. Int. Ed. 2007, 46, 4715-4718.

Intramolecular Oxidative [3+2] Cycloaddition: Diazonamide A

Burgett, A. W. G.; Li, Q.; Wei, Q.; Harran, P. G. Angew. Chem. Int. Ed. 2003, 42, 4961-4966.

Title Paper: Optimization of the [3+2] Cycloaddition

HO		N-R ² , CO ₂ Me	PIFA, rt,			R ² , CO ₂ Me
entry ^a	Ι	RI	R ²	solvent	2	yield (%) ^b
I	la	н	Н	TFE	2a	0
2	١b	CO ₂ Bn	Н	TFE	2b	0
3	lc	н	Bn	TFE	2c	0
4	١d	Bn	Bn	TFE	2d	0
5	le	Ts	Bn	TFE	2e	20
6	lf	CO ₂ Bn	Bn	TFE	2f	24
7	lf	CO ₂ Bn	Bn	HFIP	2f	41
8 c	lf	CO ₂ Bn	Bn	HFIP	2f	66

^a Reaction conditions: I (0.05 mmol), PIFA (0.06 mmol), TFE or HFIP (1 mL), rt, 4 h. ^b Isolated yield based on I. ^c 5 mL of HFIP were used.

Changing the oxidant to PhI(OAc)₂ led to a decrease in product yield.
Increased and decreased reaction temperatures did not improve the product yield.

Sun, D.; Zhao, Q.; Li, C. Org. Lett. 2011, ASAP. DOI: 10.1021/ol2021669

Total Synthesis of (+)-Decursivine

Total Synthesis of (+)-Decursivine

Sun, D.; Zhao, Q.; Li, C. Org. Lett. 2011, ASAP. DOI: 10.1021/ol2021669

Conclusion

- Li and co-workers accomplished the first asymmetric synthesis of (+)decursivine in 10 steps and a 16.7% overall yield
- Key features of their synthesis include:
 - PIFA-mediated oxidative intramolecular [3+2] cycloaddition of 5hydroxytryptophans with substituted cinnamamides in a highly diasteroselective manner
 - Traceless chirality transfer from the starting tryptophan to the target molecule
- Application of this oxidative intramolecular [3+2] cycloaddition provides an additional methodology for accessing dihydrobenzofurans